Jing Zhang soutiendra sa thèse intitulée "Développement de Chlorella vulgaris et de Saccharomyces cerevisiae en cultures immobilisées" dirigée par Benoît Fiorina.
La soutenance a lieu jeudi 16 juillet 2020 à 10h00 à CentraleSupélec, en Amphi sc.046, Bâtiment Bouygues et par vidéoconférence.
Composition du jury :
Mots clés : Chlorella vulgaris, Saccharomyces cerevisiae, colonie de microorganismes ; croissance hétérotrophe ; croissance mixotrophe ; visualisation 3D ; colonie mixte ; interaction.
Résumé : Chlorella vulgaris (C. vulgaris) est un organisme modèle qui présente un potentiel commercial élevé dans le domaine de l'alimentation et de l'énergie, avec une faisabilité prouvée de cultures sous forme de biofilms et de co-culture de levures/microalgues pour la valorisation in situ du CO2 dans les processus biotechnologiques. Ce travail de doctorat se concentre sur les colonies immobilisées dans des cultures pures ou mixtes. Il vise une meilleure compréhension des interactions au sein des colonies et entre colonies, avec pour objectif ultime de comprendre et d'optimiser les co-cultures.
Pour atteindre ces objectifs, un protocole complet et des dispositifs expérimentaux innovants ont été développés, notamment des techniques d'inoculation, des dispositifs de culture immobilisée avec capteurs de gaz, l'imagerie 3-D à l'aide d'un microscope à lumière structurée, le traitement d'images, un bilan gazeux calibré et l'analyse des données. Des précautions ont également été prises concernant les conditions d'incubation, la détermination de la masse sèche, la concentration en glucose, la taille et la densité des cellules.
Tout d'abord, le développement de colonies uniques de C. vulgaris a été étudié dans des conditions hétérotrophes. Sur la base du modèle biologique proposé pour la dynamique de croissance en hauteur et en rayon, nous avons conclu que les colonies se développaient à un taux constant dans la direction horizontale et à un taux décroissant dans la direction verticale. Ces tendances sont cohérentes avec les effets cumulés de la disponibilité du glucose et de l'oxygène. Une calotte sphérique décrit le mieux la forme des colonies pendant la période de croissance. L'interaction intraspécifique de C. vulgaris a été étudiée en faisant croître plusieurs colonies sur la même plaque à des distances de initiales différentes : 1,5 mm, 3 mm et 15 mm. Aucun effet significatif de la coalescence des colonies n'a été observé sur les taux de croissance en rayon et en hauteur.
Ensuite, l'effet de la lumière a été testé de deux manières : présence de lumière durant toute la culture et exposition à la lumière après une première période hétérotrophe. La forme de la colonie est significativement affectée par le mode de culture : la colonie en croissance hétérotrophe garde une calotte sphérique, tandis que la colonie en croissance mixotrophe atteint une forme cylindrique, en raison d'une croissance radiale presque complètement arrêtée après quelques jours. Grâce au dispositif de mesure des gaz, les données brutes ont été analysées à l'aide d'une équation de bilan gazeux pour obtenir les termes source biologique d'O2 et de CO2. Le rapport de masse du gaz sur la masse sèche de la cellule a été déterminé pour les différentes conditions de croissance. Une synergie est mise en évidence entre la photosynthèse au sommet de la colonie et l’hétérotrophie à la base.
L'interaction inter-espèces de C. vulgaris et S. cerevisiae a été étudiée à deux niveaux : au niveau des cellules dans la même colonie et entre colonies. Au niveau de la colonie, des colonies de C. vulgaris et de S. cerevisiae ont été inoculées avec deux distances de séparation initiales différentes (3 mm et 15 mm). Les colonies ont été observées en continu pendant un mois. Même si des recherches supplémentaires sont nécessaires, la croissance et l'interaction observées semblent s'expliquer principalement par le taux de croissance beaucoup plus élevé de la levure. Après avoir fusionné, les colonies de S. cerevisiae finissent par envelopper les colonies de C. vulgaris. Au niveau des cellules, les colonies mélangées de C. vulgaris et de S. cerevisiae ont été observées en 3D. En raison de leur croissance rapide, les cellules de S. cerevisiae finissent par dominer l'ensemble de la colonie, à l'exception de quelques cellules de C. vulgaris présentes au cœur de la colonie et sur le dessus. Les cellules de C. vulgaris cessent presque de croître lorsque les nutriments sont limités.
Keywords: Chlorella vulgaris, Saccharomyces cerevisiae, microorganism colony; heterotrophic growth; mixotrophic growth; 3D visualization; intermixed colony; interaction.
Abstract: Chlorella vulgaris (C. vulgaris) is a model organism that has high commercial potential in the food and energy field, with proved feasibility of cultures as biofilms and yeast/ microalgae co-culture for in situ CO2 mitigation in biotechnological processes. This PhD work focuses on immobilized colonies in pure or mixed cultures. It proposes a better understanding of the interactions within and between colonies, with the ultimate goal of understanding and optimizing co-cultures.
To achieve these goals, a comprehensive protocol and required innovative experimental devices were developed including inoculation techniques, immobilized culture devices with gas sensors, 3-D imaging using a structured-light microscope, image processing, calibrated gas balance equation and data analysis. Care was also taken regarding incubation conditions, determination of dry mass, glucose concentration, cell size and density.
Firstly, the development of single C. vulgaris colonies under heterotrophic conditions was studied. Based on the biological model proposed for the growth dynamics in height and radius, we concluded that the colonies expanded at a constant rate in the horizontal direction and a decreasing rate in the vertical direction. The trends are consistent with the cumulative effects of glucose and oxygen availability. A spherical cap best describes the shape of the colonies during the growth period. The intraspecies interaction of C. vulgaris was investigated by growing several colonies on the same plate with different initial separation distances: 1.5 mm, 3mm, and 15 mm. No significant effects of colony merging were observed on the growth rates in radius and height.
Then, the effect of light was tested in two ways: presence of light throughout the culture and exposition to light after a first, purely heterotrophic, period. The shape of colony is significantly affected by the cultivation mode: the heterotrophic growth colony keeps a spherical cap, while the mixotrophic growth colony reaches a cylindrical shape, due to a radial growth almost completely stopped after some days. Thanks to the gas measurement device, the raw data were analyzed using a gas balance equation to obtain the biological source terms of O2 and CO2. Mass ratio of gas to dry mass of cell are proposed for the different growth conditions. A synergy is highlighted between photosynthesis at the top of the colony and heterotrophy at the base.
The interspecies interaction of C. vulgaris and S. cerevisiae were studied at two levels: cell-cell level within the same colony and colony-colony level. At the colony-colony level, colonies of C. vulgaris and S. cerevisiae were inoculated with two different initial separation distances (3 mm and 15 mm). Colonies were observed continuously for one month. Even though additional investigation is needed, the observed growth and interaction seems to be mostly explained by the much larger growth rate of yeast. After merging S. cerevisiae colonies eventually envelop C. vulgaris colonies. At the cell-cell level, C. vulgaris and S. cerevisiae intermixed colonies were observed in 3D. Due to its fast grow, S. cerevisiae cells eventually dominate the whole colony, at the exception of some C. vulgaris cells present in the core of the colony and on the top. C. vulgaris cells almost stop growing when the nutrients are limited.